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Proton magic angle spinning (MAS) spectra of a model spin
system, consisting of six protons, were calculated for different
values of the external magnetic field and the spinning frequencies.
Floquet theory was used to evaluate these spectra. The reduction
of the effective homonuclear dipolar interaction for increasing
spinning frequency was investigated. The influence of an increase
of the external magnetic field and the spinning frequencies on the
linewidths of the centerband spectra is discussed. This Floquet
description of the rotating proton spin system will assist us in our
calculations of the CPMAS spin dynamics of a low abundant spin
interacting with a set of coupled protons. © 1998 Academic Press

INTRODUCTION

Using proton spectra in NMR studies of solids has become
increasingly popular. In particular because of commercially
available high-spinning-frequency rotors and the tendency to
exploit high magnetic fields, it has become more attractive to
use proton magic angle spinning (MAS) NMR of polycrystal-
line and amorphous materials. Proton MAS spectra obtained at
high spinning rates and high fields exhibit significant line
narrowing (1). The combination of multiple-pulse NMR and
MAS can result in high-resolution spectra (2) and in recent
publications this approach has been extended and improved
(3). The frequency-switched Lee–Goldburg (4) has provided
an alternative approach for detecting high-resolution spectra
and lately it has been implemented in two-dimensional MAS
experiments (5). In a recent application of proton NMR, dou-
ble-quantum sideband spectra have been detected for structural
elucidations (6).

Development of novel proton line-narrowing techniques and
cross-polarization methods in MAS NMR requires a theoretical
framework to describe these experiments. In order to better
understand the spin evolution of a set of coupled protons
rotating at the magic angle in a high external magnetic field, we
suggest the use of the Floquet description of this spin system
(7, 8). The magnetic field and spinning frequency dependence
of Floquet state energies, in particular, can be followed and
interpreted in terms of a reduction of the effective homonuclear
interaction in the rotating proton system. This reduction was
discussed recently, while describing CPMAS experiments on
anS(1/ 2)IN spin system using Floquet theory (9). The changes
in the Floquet energies for increasing spinning frequency result

in the narrowing of the proton linewidths. Maricq and Waugh
(10) in their pioneering paper on MAS NMR discussed the
dependence of the linewidths of a homonuclear spin system on
the spinning frequency and derived an inverse proportionality.
Levitt et al. (11) extended the discussion and showed that this
dependence can become stronger and can reach an inverse
square dependence at high spinning frequencies. Wind has
shown that the experimental proton linewidth of a variety of
compounds is inversely proportional to the spinning frequency
(12). Simulations of MAS spectra of two- and three-spin
homonuclear spin systems were extensively studied and the
residual broadening of their center and sidebands for varying
spinning frequencies was reported (11, 13–15).

Here we consider a six-proton spin system and demonstrate
the use of the Floquet approach for calculating its proton MAS
spectrum. In the next section we provide the theoretical back-
ground for the Floquet description of a set of coupled protons,
rotating at the magic angle in a high magnetic field. The matrix
elements of the proton Floquet Hamiltonian are derived and the
diagonalization procedure of this Hamiltonian is shown. In the
third section the methodology for calculating the spectra is
presented as well as some results. In the last section these
results are discussed and some comments are made about their
significance for further research.

THEORETICAL BACKGROUND

The rotating frame Floquet Hamiltonian (7, 9, 16) describing
a homonuclear spin system can be represented in a set of
dressed spin statesuMpn&, where uMp& is one of thep 5
1, . . . , nM spin states with az component of the total spin
angular momentum equal toM andn 5 2`, . . . , ` are the
Fourier indexes. The number of individual states in each mani-
fold of states {uMn&} for a fixed M value depends on the
number of spins in the system and the number of Fourier
indexes,n 5 2nf, . . . , nf. For a set ofN spins, eachM
manifold containsnM 5 N!/(N 2 (M 1 N/ 2))!(M 1 N/ 2)!
spin states. The number of Fourier indices of the truncated
Floquet matrix must be determined empirically. For example,
this can be done by following the convergence of the simulated
spectrum for increasingNf 5 2nf 1 1 values.

In the rotating frame the Hamiltonian has only nonzero

JOURNAL OF MAGNETIC RESONANCE135,418–426 (1998)
ARTICLE NO. MN981561

4181090-7807/98 $25.00
Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.



matrix elements inside the {uMn&} manifolds (9). There are
three types of elements: (i) the diagonal elements, which are
equal ton times the spinning frequency plus a sum of isotropic
chemical shifth0

i (Mp) and j -coupling valuesj ij

^MpnuHFuMpn& 5 nvR 1 O
i

h0
i ~Mp! 1 O

i,j

a ij ~Mp! j ij ; [1]

(ii) the off-diagonal elements that are a sum of chemical shift
anisotropy termshk

i (Mp) and the secular dipolar interaction
termsak

ij ,

^MpnuHFuMpn 1 k& 5 O
i,j

hk
i ~Mp! 1 a ij ~Mp!ak

ij , [2]

with a ij (Mp) 5 61
4

according to^MpuI ziI zjuMp& 5 61
4
; and

(iii) the off-diagonal elements that are equal to one of the
flip-flop termsak

ij of the nonsecular part of the dipolar inter-
action and thej -coupling,

^MpnuHFuMqn 1 k& 5 O
i,j

a ij ~Mpq!$ak
ij 2 2j ij dk0%, [3]

with p Þ q anda ij (Mpq) 5 0, 21
4

according to1
4

^MpuI i
1I j

2 1
I i
2I j

1uMq& 5 0, 1
4
. The chemical shift and dipolar interaction

terms are nonzero fork 5 22, 21, 0, 1, 2. The actual values
of the h and a elements can easily be evaluated for a spin
system with well-defined chemical shift parameters and atomic
positions. The dipolar terms are inversely proportional to the
third power of the internuclear distances and are functions of
the relative orientations of these vectors with respect to the
rotor frame (16),

h0
i ~Mp! 5 mi

pd i

hk
i ~Mp! 5

1
2

mi
ps iguku

i exp$ick
i %,

ak
ij 5

g2m0\

4r ij
3 Guku

ij exp$ikf ij %, [4]

wheremi
p is 61/2, according to the value of thez component

of the angular momentum of spini in uMp&, and theg andG
coefficients and the anglesck

i are real geometric functions of
the initial Euler angles (a, b, g) of the chemical shift tensors
and the polar angles (u, w) of the dipolar vectorsr in the rotor
frame, respectively. Thed ands parameters are the isotropic
and anisotropic chemical shift values of the spins with a
magnetogyric ratiog. The chemical shift parameters and the
secular terms of the dipolar interaction are all diagonal inMp,
whereas the nonsecular flip-flop terms are off-diagonal. These
last terms are the source of the homonuclear line broadenings
in the proton MAS spectra and complicate their evaluation. As
we are interested only in proton MAS spectra, no radiofre-
quency terms are considered in the Hamiltonian.

This Floquet Hamiltonian is used for evaluating MAS spec-
tra of N coupled spins. Although in a real sample the number
of coupled spins is very large, for practical reasons we must
restrict ourselves to the proton spectrum of a single small
molecule. A calculation considering only one molecule would
correspond to a real system of ordered molecules in which the
intermolecular couplings are ignored, or a single molecule in a
nonprotonated environment.

SIMULATIONS OF PROTON MAS SPECTRA

To evaluate the proton spectrum of anN-proton system the
Floquet Hamiltonian matrix elements must be calculated and
the truncated representations of its (nM z Nf) 3 (nM z Nf)
diagonal blocks in the {uMn&} manifolds must be constructed
for all M values. Here the value ofNf is determined by
monitoring the convergence of the principal eigenvalues. Each
M block matrix must be diagonalized to obtain a set of eigen-
values and eigenvectors of the form (9)

ln
p~M! 5 l0

p~M! 1 nvR

uln
p~M!& 5 O

m52Nf

Nf O
q51

nM

uMqm&^MqmuDuln
p~M!&, [5]

with l0
p(M) and ul0

p(M)& being the principal eigenvalues and
eigenvectors (7), respectively, andD the diagonalization ma-
trix of the Floquet Hamiltonian. The proton spectrum can then
be evaluated by determining the frequencies and amplitudes of
the allowed transitions of the spin system. To do so the nor-
malized matrix elements of the signal operator between the
uln

p(M)& and ul0
q(M 1 1)& states must be calculated. The

nonzero elements of this operatorM0, in the original Floquet
state representation, are

^MpnuM 0u~M 1 1!qn& 5 ^MpuO
i51

N

I i
2u~M 1 1!q& [6]

and the free induction decay signal becomes (7, 16)

S~t! 5 O
M

O
p,q

O
n

Sn
pqexp$i ~ln

p 2 l0
q!t% [7]

and

Sn
pq 5 $O

m

^lm
p ~M!uD21M 0Dul0

q~M 1 1!&* %

3 ^ln
p~M!uD21M 0Dul0

q~M 1 1!&. [8]

A sequential diagonalization of the Floquet block matrices, for
all M values, and a calculation of the frequencies and ampli-
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tudes, following Eqs. [7] and [8], for a set of randomly oriented
molecules result in a MAS proton powder spectrum.

To demonstrate the field and spinning frequency dependence
of the proton MAS spectra a set of simulations was performed.
For these calculations a FORTRAN program based on the
procedure discussed above was written. Its input parameters
are proton coordinates, isotropic chemical shifts, and a 121-
kHz dipolar-coupling strength for a pair of protons with sep-
aration of 1 Å. We simulated spectra for a system of six
coupled protons in a system with a structure similar to a
d2-trans-2-pentenal molecule

CD2H
aOCH2

bOCHcACHdOCHeO,

with isotropic chemical shift values

da 5 1.2 ppm,db 5 2 ppm,dc 5 6 ppm,

dd 5 6.5 ppm,de 5 9.5 ppm.

In Table 1 the proton coordinates of the molecule in an arbi-
trary reference frame are summarized. This model system
contains protons with chemical shifts that are spread over a
range of more than 8 ppm. It consists of one CH2 group, one
CHO group with a chemical shift that is 3 ppm removed from
the other protons, and three CH groups with chemical shift
values ranging from 1.2 to 6.5 ppm. To simplify the calcula-
tions, no chemical shift anisotropy parameters and hetero-
nuclear interactions were taken into account.

Proton spectra of our model system were simulated and
some results are shown in Figs. 1 and 2. In the calculations the
M block Floquet matrices were constructed withNf 5 21. For
N 5 6 the number of statesnM are 1, 6, 15, 20, 15, 6, and 1
for M 5 3, 2, 1, 0,21, 22, and23, respectively. Although
all spectra exhibited significant sideband intensities, only the
central part of the spectra are shown. The spectra were ob-

tained by a summation of the frequency spectra of 300 single
molecules with varying Euler angles (a, b, g), between an
arbitrary molecular frame and the rotor frame, determined by
Conroy’s integration method (17). In our powder calculation
no initial analytic integration was performed over the time-
dependent Eulera angle (18). All spectra were convoluted by
a Lorentzian broadening function with a width of 60 Hz. The
frequency resolution of the spectra was 20 Hz. The nonzero
j -coupling constants that are smaller than 10 Hz did not influ-
ence these spectra significantly. The CPU time for a full
powder calculation of six spin systems was 4 h on anALPHA
DEC workstation.

Figure 1 shows the combined effect of an increase of the
magnetic field and the spinning frequency. At high field and
spinning frequencies the line at 9.5 ppm is significantly re-
solved from the other lines. However, the CHcACHd and
CHaOCH2

b lines, with chemical shift separations in the range
of 1.2 to 2.0 ppm, are not resolved. In particular the H2 protons
exhibit a significant residual broadening even at 800 MHz.
Figure 2 shows the changes in the proton spectrum for an
increasing external magnetic field at a fixed spinning frequency
of 20 kHz.

The spectra are composed of many allowed transitions

FIG. 1. The simulated proton MAS powder spectrum of the
CD2HOCH2OCHACHOCOH model molecule (see main text) (a) rotating at
a spinning frequency of 30 kHz in an 800-MHz external magnetic field and (b)
at a spinning frequency of 7 kHz at a field of 300 MHz. In both spectra only
the centerband region is shown.

TABLE 1
The Proton Coordinates in Arbitrary Molecular Reference

Frame and Chemical Shift Values for the Two Model Molecules
CD2HaOCH2

bOCHcACHdOCHeO and CH2
xOCH2

yOCH2
z

x (Å) y (Å) z (Å) d (ppm)

Ha 2.81 20.35 28.76 1.2
H1b 5.20 0.31 28.96 2.0
H2b 4.75 0.04 27.26 2.0
Hc 4.29 2.92 27.86 6.0
Hd 7.01 1.56 27.36 6.5
He 5.97 4.63 27.15 9.5

H1x 3.0 1.7 20.9 0.0
H2x 3.0 1.7 0.9 0.0
H1y 1.9 3.9 20.9 2.0
H2y 1.9 3.9 0.9 2.0
H1z 4.4 3.7 20.9 6.0
H2z 4.4 3.7 0.9 6.0
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between Floquet states, and their energies and eigenfunc-
tions are complicated functions of the experimental param-
eters. Before discussing the spinning frequency dependence
of the linewidths in the spectrum, we summarize some of the
features of the centerband spectra of one proton and two
equivalent protons coupled to an additional proton. In the
Appendix the dependence of the proton MAS spectra of
H1–H2 and H2

1–H2 on the value of the spinning frequency
and the external magnetic field is evaluated. In this deriva-
tion we used Floquet theory together with standard pertur-
bation theory (8). These calculations show that the linewidth
of the H1 centerband is proportional to 1/(d12vR

2), whered12

is the chemical shift difference in frequency units, as was
already shown by Levittet al. (11). The H2

1 centerband
spectrum of a single H2

1–H2 spin system is composed of at
least eight transitions between the eight principal eigen-
states. Their energy dependence onvR andd12 differs from
state to state. The two eigenvalues withM 5 63/ 2 are
constant; four of the eigenvalues are about proportional to
1/vR and two follow 1/(d12vR

2). The transitions between the
states, and thus the powder spectral widths, do not follow

simple power dependences on the spinning frequency and
the chemical shift difference. However, we can conclude
that part of the lineshape does not narrow (in frequency
units) for increasing magnetic field, while the whole line-
shape narrows for increasing spinning frequency.

THE SPINNING FREQUENCY DEPENDENCE
OF THE LINEWIDTHS

To investigate the reduction of the homonuclear interac-
tion during MAS experiments we evaluated the proton line-
widths as a function of the spinning frequencynR 5 vR/2p.
In Fig. 3 the full widths at half-heightDn(nR) of the proton
centerbands are drawn as a function ofnR for a field of 300
MHz. The exact positions of the spectral lines in Fig. 3 show
small shifts that are functions of the strength of the dipolar
interactions and the chemical shift differences of the inter-
acting protons (11, 13–15). The points in this figure are the
linewidths calculated for four cases. (a) First the width of
the CHeO line in our model molecule is shown. This line is
fully resolved in the proton spectra and can easily be de-
tected. (b) Then the width of the single proton line, which is
obtained when all the chemical shift values of our molecule
are equal, is drawn. This is followed by proton linewidth
calculations for the CH2 group. For these two equivalent
spins two calculations were performed. (c) First the width of
the double-quantum spectrum of the CH2

b protons in our
molecule was monitored. The double-quantum spectrum

FIG. 3. The spinning frequency dependence of the full linewidths at
half-height Dn(nR) of different protons in the MAS powder spectra of a
six-proton spin systems: (a) The circles correspond to the proton line of the
CHeO proton in our model molecule (see main text), (b) the triangles corre-
spond to the proton line of our model molecule with all isotropic chemical shift
values equal, (c) the inverted triangles are the calculated results of the line-
widths of the double-quantum line of the CH2

b protons in our model molecule,
and (d) the squares belong to the proton line of CH2

c at 6.0 ppm in a molecule
of the form CH2

aOCH2
bOCH2

c with chemical shiftsda 5 0.0 ppm,db 5 2.0
ppm, anddc 5 6.0 ppm. The straight lines through the points have slopes
equal to21.5, 21.1, 21.3, and21.1, respectively.

FIG. 2. The calculated field dependence of the proton MAS powder
spectrum of the CD2HOCH2OCHACHOCOH model molecule rotating at a
frequency of 20 kHz.
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was calculated by assuming an initial double-quantum spin
density operator with matrix elements

^MpnuR~t!u~M 6 2!qn& 5 ^Mpu~I b
1!2 1 ~I b

2!2u~M 6 2!q& @9#

and a signal operator

^MpnuM 0
2u~M 1 2!qn& 5 ^Mpu~I b

2!2u~M 1 2!q&. @10#

This spectrum exhibits a centerband and sidebands with sig-
nificant intensities. The widths of the center and sidebands are
governed by the interactions between the H2

b protons and the
remaining protons. The interaction between the two protons
alone does not cause any broadening of the MAS spectrum.
Thus the width represents the presence of the effective inter-
action between the CH2

b protons and the rest of the molecule.
(d) Finally we evaluated the CH2 proton linewidth of the
single-quantum line of the CH2

y proton pair in a molecule of the
form CH2

x–CH2
y–CH2

z, with chemical shiftsdx 5 0 ppm,dy 5
2.0 ppm, anddz 5 6.0 ppm. The proton coordinates are listed
in Table 1. The straight lines through the calculated points in
Fig. 3 follow

log$Dv~vR!% 5 log$AvR
2x% [11]

and have slopes 1.1, x , 1.5. A study of the dependence of the
A coefficient in Eq. [11] on experimental parameters is underway.

The x values for the protons in the molecule with equal
isotropic chemical shifts (b) and the CH2

y in CH2
x–CH2

y–CH2
z (d)

are close to the experimental valuesx 5 1.0 6 0.1 obtained
by Wind (12). The terminal proton of CHeO in the model
molecule (a) shows an increased slope ofx 5 1.5.

Maricq and Waugh (10), using Average Hamiltonian The-
ory, explained the inverse proportionality of the widths as a
function of the spinning frequency. Levittet al. (11) discussed
the {1/vR} 2 dependence. Our results showx values smaller
than 2, even for the CHeO line, which indicates the complexity
of the homonuclear coupling in multispin systems. To inves-
tigate the origin of the changes in the linewidths somewhat
more, we followed the principal eigenvalues of the Floquet
Hamiltonian of our proton system, at some fixed orientation in
the rotor and at an external field of 300 MHz, as a function of
the spinning frequency. Figures 4 and 5 show the results of this
calculation. These values were obtained by numerical diago-
nalization of theM block matrices withNf 5 21. Figure 4
plots the energies forM 5 22, 21, 0. The approach of all of
these energies to their asymptotic values at infinite spinning
frequencyl0

p(Mp, `) 5 h0(Mp) was calculated, assuming that
all the j couplings were zero. Most of the energy values follow
Eq. [11]. An example is shown forM 5 22 in Fig. 4d. In
order to explain this result in terms of the Floquet description
of the spin system it would be necessary to derive some
analytic expressions for the eigenvalues based on perturbation
theory. This is not trivial because of the large size of the

matrices. For the three-proton case such a derivation is shown
in the Appendix.

The convergence of the Floquet energies shows the effective
reduction of the homonuclear dipolar interaction between the
protons at high spinning frequencies. To demonstrate this
reduction an additional energy calculation was performed as-
suming equal chemical shift values for all protons in our model
compound, and Fig. 5 shows the Floquet energies between the
values670 kHz. Clearly, for spinning frequencies larger than
10 kHz, the states with differentn values are separated from
each other and the energy spread for eachn approaches zero
for increasing spinning frequency. This reduction in the spread
of the Floquet energies influences the efficiencies of the pop-
ulation redistributions during the CPMAS mixing time (9).
During these experiments Floquet states are energy matched to
allow these population redistributions. This reduction also
changes the adiabatic character of the variable amplitude

FIG. 4. The spinning frequency dependence of then 5 0 MAS Floquet
energies of a single crystallite of the six-proton model molecule, at an arbitrary
orientation in the rotor frame. The energies are divided according to theirM
values: (a)M 5 21, (b) M 5 0, and (c) and (d)M 5 22. The dots are the
calculated values and the solid lines connect them to guide the eye. A magnetic
field of 300 MHz was used for these calculations. The energies are drawn as
a function of the spinning frequencynR 5 vR/2p. To show that almost all
energies follow approximately some {1/vR} x dependence, the results of (c)
are repeated in (d), where the absolute value of the differenceuDl0(22)u
between the eigenvaluel0(22, nR) and its chemical shift valuesl0(22, `) is
plotted on a logaritmic scale.
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CPMAS experiments (19, 20) and should influence the CP
signal enhancement.

DISCUSSION AND COMMENTS

We have studied the field and spinning frequency dependence
of the linewidths of the MAS proton spectrum of a six-spin
system, using Floquet formalism. We have found that the changes
in the Floquet energies and the linewidths of these spectra are
proportional to a power of2x 5 21.1 4 21.5 of the spinning
frequency. In addition we have discussed the reduction of the
dipolar line broadening because of chemical shift differences. Our
calculations present only a simple model for the MAS proton
spectra of a real solid. In real systems many more spins are
involved in the spin dynamics governing the free induction decay
of the proton coherences. However, the major contribution to the
signal decay comes from the short-range proton–proton interac-
tions, in particular, since the interference of coherence modula-
tions is monitored, which causes a decay of the observed signals
before a quasi-steady state is reached in the spin system. During
modeling spin diffusion processes, long-range interactions, and

indirectly coupled spins are important, because they govern the
population rearrangements monitored over long atomic distances
(21). The calculatedvR

2x dependence of the linewidths suggests
that even at high field and spinning frequencies it is necessary to
apply line-narrowing techniques (2, 3) when high-resolution pro-
ton spectra are required. Because a part of the principal energies
of the proton system is independent of chemical shift differences,
increasing the external magnetic field does not reduce the widths
(in frequency units) of all the lines in the spectrum, in particular
those of equivalent protons. Thus, techniques that take advantage
of the line narrowing, that is a result of the high field and spinning
frequency, should be developed.

In a successive publication we will discuss the spin dynam-
ics of CPMAS experiments (9, 22) involving a system consist-
ing of a13C and six protons rotating at a high frequency. These
experiments require Floquet energy matching between mani-
folds of states, such as {uMan&} and { uM 1 1bn 1 k&},
where a and b are the spin states of the carbon atom. The
energy spread of these manifolds is an important factor in
determining the sensitivity of the CPMAS signal enhancements
to mismatched Hartmann–Hahn conditions (22) and of the
adiabatic enhancements in ramped variable amplitude CPMAS
experiments (19). The dependence of the Floquet energies on
the spinning frequency indicates that the effective homonuclear
dipolar interaction decreases, but remains significantly far from
zero. These reduced interactions play an important role during
spin diffusion and CPMAS experiments on samples rotating at
high spinning frequencies.

APPENDIX

Here we discuss the spinning frequency dependence of the
MAS spectra of two simple spin systems, H1–H2 and H2

1–H2,
using Floquet theory. In order to simplify the discussion we
shall discard the scalar couplings between the protons. The
Floquet matrixHF of the two-proton system has three nonzero
diagonal blocks of dimensionsNf, 2Nf, andNf with M 5 1, 0,
and21 for the spin statesaa, (ab, ba), andbb, respectively.
If the chemical shift values of the protons ared1 andd2 and all
homonuclear dipolar elements are inserted in the Hamiltonian,
the matrices represented in the {u(M 5 1)n&} and { u(M 5
21)n&} manifolds can be diagonalized straightforwardly, re-
sulting in the principal eigenvalues (7)

l0
aa 5 2l0

bb 5 1/ 2~d1 1 d2!. [A1]

The principal eigenvalues of the {u(M 5 0)n&} block must be
calculated by diagonalization. Whend 5 d1 5 d2 the diagonal-
ization of this block is again simple and the eigenvalues become
equal tol0

ab6ba 5 0, independent of the dipolar interaction (15,
16). As a result the central transition frequencies of the MAS
spectra of all spin pairs in a powder are equal tol0

aa 2 l0
ab1ba 5

l0
ab1ba 2 l0

bb 5 d, and the dipolar powder spectrum consists of
sharp center and sidebands as expected (10).

FIG. 5. All Floquet energies between 60 and260 kHz (top) 4 and24 kHz
(bottom) of a single crystallite of our model molecule, containing six protons
all with a chemical shift value equal to zero. The observed spread of the
Floquet energies is solely due to the homonuclear interaction. The decrease of
these energy spreads represents the effective reduction of the interaction for
increasing spinning frequency.
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When the chemical shifts differ the diagonalization of the
{( uM 5 0)n&} block is not trivial and the principal eigenvalues
must be obtained by numerical calculation. However, for di-
polar matrix elements smaller than the spinning frequency and
the chemical shift difference (d1 2 d2), perturbation theory can
be used to estimate the magnitude of the principal eigenvalues.
Before doing so we first diagonalize the single {uabn&} and
{ uban&} blocks and obtain the diagonal elements

l0
ab 5 2l0

ba 5 1/ 2~d1 2 d2!. [A2]

After these diagonalizations the nonzero off-diagonal elements
of HF become

^ln
abuHFuln1k

ba & 5 O
l ,m

^ln
abuD21uabm&^abmuHFubal &

3 ^bal uDuln1k
ba &, [A3]

whereD is the diagonalization matrix of thez blocks {uabn&}
and {uban&}. For large values ofvR the approximate values of
the elements ofD are, to first order in 1/vR, equal to (7)

^abnuDuln
ab& > 1

^abnuDuln1m
ab & >

^abnuHFuabn 1 m&

mvR
. [A4]

Insertion of these expressions in Eq. [A3] indicates that the
most important elements of the transformed Floquet matrix are
proportional to 1/vR

^ln
abuHFuln

ba& 5 ^ln
bauHFuln

ab&

> O
k

2
u^abnuHFuabn 1 k&u2

kvR
. [A5]

The principal eigenvalues of the Floquet matrix can then be
estimated by using second order perturbation theory

l0
ab 5 2l0

ba > 1/ 2~d1 2 d2! 1
u^l0

abuHFul0
ba&u2

~d1 2 d2!
, [A6]

and with Eq. [A5] the frequency shiftsDl i, defined by {(l0
aa

2 l0
ab) 2 d2}, {( l0

aa 2 l0
ba) 2 d1}, {( l0

ab 2 l0
bb) 2 d1},

and {(l0
ba 2 l0

bb) 2 d2}, i 5 1, . . . , 4, respectively, of the
centerband lines of a spin pair become proportional to

Dl1 } 1/~d1 2 d2!vR
2 . [A7]

Thus, as expected, the bandwidths of the MAS spectrum of a
powder is inversely proportional to the chemical shift differ-
ence and the square of the spinning frequency (11).

Figure 6 shows the spinning frequency dependence of the

full width at half-height of the lineshapes atd1 and d2 of a
powder sample of a proton pair withr12 5 1.5 Å and a
chemical shift difference of 5 ppm, at two external magnetic
fields of 400 and 800 MHz, with {d1 2 d2} equal to 2 and 4
kHz, respectively. The ratio between the widths at these two
fields is 2, which is equal to the ratio between the frequency
differences, according to Eq. [A7].

To investigate the bandwidths of the lineshapes in the MAS
centerband of the three-proton system H2

1–H2 we examine
again its Floquet Hamiltonian. The matrix representation of
this Hamiltonian consists of four diagonal blocks withM 5
3/ 2, 1/ 2,21/ 2, and23/2 of dimensionsNf, 3Nf, 3Nf, and
Nf, respectively. The centerband lines in the spectra can be
divided into five main groups of transitions between the eight
principal Floquet energies of these block matrices

l0
1~3/ 2!; $l0

1~1/ 2!, l0
2~1/ 2!, l0

3~1/ 2!%;
$l0

1~21/ 2!, l0
2~21/ 2!, l0

3~21/ 2!%; l0
1~23/ 2!

with chemical shift values

$d1 1 1/ 2d2%; $1/ 2d2; 1/ 2d2; ~d1 2 1/ 2d2!%;
$21/ 2d2; 21/ 2d2; ~2d1 1 1/ 2d2!%; $2d1 2 1/ 2d2%,

respectively. The two sets of transitions close tod1 are

~1! $l0
1~3/ 2! 2 l0

1~1/ 2!% and $l0
1~3/ 2! 2 l0

2~1/ 2!%
$l0

1~1/ 2! 2 l0
3~ 2 1/ 2!% and $l0

2~1/ 2! 2 l0
3~21/ 2!%

~2! $l0
3~1/ 2! 2 l0

1~ 2 1/ 2!% and $l0
3~1/ 2! 2 l0

2~21/ 2!%
$l0

1~21/ 2! 2 l0
1~23/ 2!% and $l0

2~21/ 2! 2 l0
1~23/ 2!%

FIG. 6. The calculated dependences of the full widths at half-height of the
proton powder lineshapes at the centerband of the MAS spectra of a two-
proton system H1–H1, with r12 5 1.5 Å andd12 equal to 2 kHz (circles) and
4 kHz (squares). These widths are proportional to {1/d12vR

2}. The slopes of the
lines through the calculated points are equal to22 and the ratio between the
widths at 2 and 4 kHz equals 2 for all spinning frequencies.
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and the three sets of transitions close tod2 are

~3! $l0
1~3/ 2! 2 l0

3~1/ 2!%

~4! $l0
1~1/ 2! 2 l0

1~21/ 2!% and $l0
1~1/ 2! 2 l0

2~21/ 2!%
$l0

2~1/ 2! 2 l0
1~21/ 2!% and $l0

2~1/ 2! 2 l0
2~21/ 2!%

~5! $l0
3~21/ 2! 2 l0

1~23/ 2!%.

In addition to these 14 transitions some low-intensity transi-
tions appear in the spectrum, which are due to mixing between
nondegenerate product spin states.

For effectively weak dipolar interactions between the spins,
i.e., at high spinning frequencies, the principal eigenstates
correspond to the spin states

ul0
1~3/ 2!&3 uaaa0& ul0

1~21/ 2!3 uabb0
ul0

1~1/ 2!3 uaba0 ul0
1~21/ 2!3 ubab0

ul0
2~1/ 2!3 ubaa0 ul0

2~21/ 2!3 ubba0
ul0

3~1/ 2!3 uaab0 ul0
3~23/ 2!3 ubbb0

[A8]

(the order of the spin states is chosen according to H1–H1–H2). The
spinning frequency dependence of the eigenvalues of these states
can be estimated by using perturbation theory. The matrix ele-
ments of the Floquet block matrices can be evaluated straightfor-
wardly using Eq. [3], and theM 5 3/2 andM 5 23/2 blocks can
be diagonalized analytically resulting in the principal eigenvalues

l0
1~3/ 2! 5 1/ 2~2d1 1 d2!

l0
1~23/ 2! 5 21/ 2~2d1 1 d2!. [A9]

The M 5 1/ 2 Floquet matrix can be represented in the
manifold of states {u(aba)n&, u(baa)n&, u(aab)n&}. Its di-
agonal elements are equal tonvR 1 1/ 2d2, nvR 1 1/ 2d2,

and nvR 1 d1 2 1/ 2d2, and the diagonalization of thez
blocks leaves these elements unchanged

ln
1~1/ 2! 5 nvR 1 1/ 2d2

ln
2~1/ 2! 5 nvR 1 1/ 2d2

ln
3~1/ 2! 5 nvR 1 d1 2 1/ 2d2. [A10]

The nonzero off-diagonal elements ofHF, which are significant
for our discussion, become, to first order in 1/vR, equal to ((p, q)
5 (1, 2), (2, 3), (1, 3) andc1 5 aba, c2 5 baa, c3 5 aab),

^ln
p~1/ 2!uHFuln

q~1/ 2!&

> O
k

1

kvR
$^cp0uHFucqk&^cqkuHFucq0&

1 ^cq0uHFucpk0&* ^cpkuHFucp0&* %, [A11]

FIG. 7. The shifts of the principal Floquet eigenvalues of a rotating single
three-proton system H2

1–H2, placed at some arbitrary orientation in the rotor, as a
function of the spinning frequencynR 5 vR/2p and chemical shift differenced12

in units of kHz. Only six of the eight eigenvalues are shown. The two missing
values are constant and belong to thel0

1(63/2) states. The six values correspond
to (F) l0

1(21/2), (Œ) l0
2(21/2), (�) l0

3(21/2), (✚) l0
1(1/2), (✖) l0

2(1/2), and (})
l0

3(1/2). The shifts are equal to the differences between the eigenvalues and their
chemical shift valuesDl0

i (M) 5 l0
i (M, nR) 2 l0

i (M, `). TheDl0
3(61/2) shifts are

proportional to 1/vR
2 and decay faster than 1/d12 and theDl0

1,2(61/2) shifts are
rather independent ofd12 and are proportional to (1/vR)0.8–1.0.

FIG. 8. The simulated centerband of the proton MAS powder spectrum of a
three-proton system H2

1–H2, with r1112
5 1.5 Å, r112

5 r122
5 2.7 Å. Spectra of

1154 crystal orientations were evaluated and added together to form the powder
spectra. This number was not enough, even after a broadening of 20 Hz, to
eliminate the fluctuations in the spectra. The top spectrum was calculated for a
300-MHz external field and a spinning frequency of 30 kHz. For the middle
spectrum the field was increased to 800 MHz and for the bottom spectrum the
spinning frequency was increased to 60 kHz. Part of the line narrowing in the
middle spectrum is due to the fact that the spectra are presented in a ppm scale.

425SPECTRAL SIMULATIONS USING FLOQUET THEORY



where we again used the expansions for the diagonalization
matrix elements as in Eq. [A4]. The elements in Eq. [A11]
connect the diagonal elements in Eq. [A10] and cause a spin-
ning frequency-dependent shift of the Floquet energies. For
dipolar terms in the Hamiltonian that are much smaller than the
spinning frequency and the chemical shift differences, pertur-
bation theory predicts that the principal eigenvalues of the
M 5 1/ 2 manifold become about equal to

ln
1~1/ 2! > nvR 1 1/ 2d2 1 1/ 2^ln

1~1/ 2!uHFuln
2~1/ 2!&

ln
2~1/ 2! > nvR 1 1/ 2d2 2 1/ 2^ln

1~1/ 2!uHFuln
2~1/ 2!&

ln
3~1/ 2! > nvR 1 d1 2 1/ 2d2

1 1/d12 ~u^ln
3~1/2!uHFuln

1~1/2!&u2

1 u^ln
3~1/ 2!uHFuln

2~1/ 2!&u2!. [A12]

Similar results can be derived for the {u(M 5 21/ 2)n&}
manifold.

This short derivation, and in particular the expressions in
Eqs. [A9] and [A12], predicts that part of the shifts of the H2

1

transitions (1) and (2) are inversely proportional tovR and
independent ofd12 and part of the shifts show a more compli-
cated dependence, of the general form {s1/vR 2 s2/(d12vR

2)}.
Thus in a powder MAS spectrum the spectral bandwidth does
not follow some simple power dependence onvR. Those parts
of the spectrum that are independent ofd12 will show narrow-
ing only for an increase of the magnetic field when the spec-
trum is represented in a ppm scale.

To check numerically the spinning frequency dependence of
the proton line positions in the three-spin MAS spectrum, the
three-proton system H2

1–H2 was oriented in the rotor frame at
some arbitrary orientations and the eight principal eigenvalues
were evaluated. In Fig. 7 the dependence of six of these values
on nR 5 vR/2p and d12 for a typical single orientation is
shown. The two missing values are constant. As can be seen
the other values follow the predictions of Eqs. [11] and [12].
The spin parameters of the H2

1–H2 crystallite werer112
5 r122

5 2.7 Å and r1112
5 1.5 Å and the simulations were per-

formed with Nf 5 21. In Fig. 8 centerbands of the MAS
powder spectra are shown for different fields and spinning
frequency. The fluctuations in the spectra are due to the re-
stricted number of 1154 orientations that were taken into
account for the powder integration. A line broadening of 20 Hz
was applied.
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